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EVOLUTION AND EXTINCTION IN A CHANGING ENVIRONMENT: 

A QUANTITATIVE-GENETIC ANALYSIS 


REINHARDBURGER' AND MICHAELLYNCH^ 
l~nstitutfur Mathenzatik, Universitat Wien, Strudlhofgasse 4, A-1090 Wien, Austria 

2~epartnzentof Biology, University of Oregon, Eugene, Oregon 97403 

Abstract.-Because of the ubiquity of genetic variation for quantitative traits, virtually all populations have some 
capacity to respond evolutionarily to selective challenges. However, natural selection imposes demographic costs on 
a population, and if these costs are sufficiently large, the likelihood of extinction will be high. We consider how the 
mean time to extinction depends on selective pressures (rate and stochasticity of environmental change, and strength 
of selection), population parameters (carrying capacity, and reproductive capacity), and genetics (rate of polygenic 
mutation). We assume that in a randomly mating, finite population subject to density-dependent population growth, 
individual fitness is determined by a single quantitative-genetic character under Gaussian stabilizing selection with 
the optimum phenotype exhibiting directional change, 'or random fluctuations, or both. The quantitative trait is de- 
termined by a finite number of freely recombining, mutationally equivalent, additive loci. The dynamics of evolution 
and extinction are investigated, assuming that the population is initially under mutation-selection-drift balance. Under 
this model, in a directionally changing environment, the mean phenotype lags behind the optimum, but on the average 
evolves parallel to it. The magnitude of the lag determines the vulnerability to extinction. In finite populations, stochastic 
variation in the genetic variance can be quite pronounced, and bottlenecks in the genetic variance temporarily can 
impair the population's adaptive capacity enough to cause extinction when it would otherwise be unlikely in an 
effectively infinite population. We find that maximum sustainable rates of evolution or, equivalently, critical rates of 
environmental change, may be considerably less than 10% of a phenotypic standard deviation per generation. 

Key words.-Demographic stochasticity, environmental change, extinction, genetic stochasticity, mutation, quantitative 
genetics, selection. 
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Paleontologists have focused a great deal of attention on 
episodes of mass extinction and the physical factors that 
might have led to them. More recently, concern with basic 
factors that determine the vulnerability of small populations 
to extinction has driven the development of a substantial body 
of theory in conservation biology. In both of these fields, 
remarkably little attention has been devoted to understanding 
the influence of evolutionary processes on the risk of ex-
tinction. 

Natural selection resulting from temporal environmental 
change poses a major challenge to all organisms. By causing 
higher mortality and/or lower fecundity than would occur 
otherwise, natural selection usually will impose a demo-
graphic load on a population by reducing the population 
growth rate or density, or both. In the short term, populations 
can meet this challenge by migrating to more favorable hab- 
itat (Pease et al. 1989), by acclimating physiologically (Ayres 
1993), and in some special cases, by entering diapause. How- 
ever, in the face of a long-term directional trend in the en- 
vironment, evolutionary adaptation is essential to population 
survival (Geber and Dawson 1993; Hoffmann and Blows 
1993; Lynch and Lande 1993). Since most populations harbor 
some genetic variation for most quantitative characters, the 
potential for evolutionary change is ubiquitous, as demon- 
strated by numerous long-term programs of artificial selection 
(Falconer 1989). Less clear is the magnitude of selection that 
can be sustained by a population before the load is so great 
that the population begins to decline toward extinction. 

Models have been developed that predict a critical rate of 
long-term environmental change beyond which extinction is 
certain (Lynch et al. 1991; Lynch and Lande 1993). These 
models give at least a qualitative picture of the ecological 
and genetic factors involved in the extinction of populations 

facing selective challenges. The models also yield some in- 
sight into the constraints on the long-term rate of phenotypic 
evolution. Since viable populations must ultimately evolve 
at the same rate as the environment is changing, the critical 
rate of environmental change is equivalent to the maximum 
sustainable rate of evolution. 

The theory developed in Lynch and Lande (1993) was 
focused on small sexual populations, but in the interest of 
simplicity, extinction was treated as an essentially determin- 
istic process. A positive geometric-mean growth rate of the 
population was used as a criterion for survival. Populations 
exposed to a rate of environmental change exceeding the 
critical rate were assumed to be doomed to certain extinction, 
which is reasonable. However, populations exposed to rates 
of change below the critical rate were assumed to be im- 
mortal, a condition that cannot be strictly valid for finite 
populations subject to genetic and demographic stochasticity. 

Even if the critical rate of change identified by Lynch and 
Lande (1993) is not exceeded, provided all individuals have 
a nonzero probability of dying, any population will have some 
finite probability of becoming extinct in any generation. In 
principle, this probability may be substantial if the rate of 
environmental change is below but near the threshold. In a 
finite population, the genetic variance can drift substantially 
from generation to generation (Lynch and Hill 1986; Biirger 
et al. 1989; Keightley and Hill 1989; Zeng and Cockerham 
1991), and recovery from periods of low variation can some- 
times require a large number of generations. Such temporal 
bottlenecks in genetic variance can cause a population to lag 
temporarily so far behind the optimum phenotype that ex- 
tinction would be highly likely even if unexpected in a de- 
terministic situation. In addition, if the environmental change 
has a stochastic as well as a directional component, it is 
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possible that by chance the population will experience a long 
sequence of particularly extreme environments. This can 
cause the population rate of growth to be negative for a long 
enough time to cause extinction, and even if extinction does 
not result immediately, the loss of genetic variance resulting 
from a depressed population size can substantially reduce the 
population's ability to respond to future selective challenges. 
In principle, these types of synergistic effects could lead to 
rapid extinction at rates of environmental change much lower 
than those identified by Lynch and Lande (1993) as critical. 

The purpose of this paper is to determine how the expected 
time to extinction depends on general features of demography 
(potential rate of population growth), the environment (car- 
rying capacity, forces of selection), and the genetic system 
(rate of polygenic mutation). Although our approach to the 
problem departs from that used by Lynch and Lande (1993), 
the two approaches are related, as even after various sources 
of stochasticity are accounted for, there is still a rate of en- 
vironmental change beyond which extinction is virtually cer- 
tain to occur rapidly. 

Our results are based largely on computer simulations, tak- 
ing into explicit consideration the genetics of the selected 
trait, allowing for a stochastic component of environmental 
change, and incorporating a simple model of density-depen- 
dent population growth. We also introduce an analytical ap- 
proach that under a broad range of conditions yields predic- 
tions that are in good accord with the simulation results. In 
addition to yielding information relevant to the extinction 
process, this study provides some insight into the expected 
dynamics of the mean and variance of a quantitative trait in 
a changing environment. 

The General Model 

We consider a randomly mating, finite population with dis- 
crete generations, subject to density-dependent population 
regulation. Individual fitness is determined by a single quan- 
titative character under Gaussian stabilizing selection on vi- 
ability, with the optimum phenotype 0, exhibiting temporal 
change. The viability of an individual with phenotypic value 
z is assumed to be I
W,,, = exp --( z  , 

where w2 is inversely proportional to the strength of stabi- 
lizing selection. That is, the curvature of the fitness function 
near its optimum increases with decreasing w2. Selection acts 
only through viability selection, and each individual produces 
B offspring. 

Our intention is to investigate the response to environ- 
mental change for a population that has been at mutation- 
selection-drift balance. This environmental change may be 
either directional, or stochastic, or a combination of both. A 
simple model for this is a phenotypic optimum that moves 
at a constant rate k per generation, fluctuating randomly about 
its expected position, 

where E~ represents white noise with variance a;, mean zero, 
and no autocorrelation. Under this model, the population ex- 

periences a mixture of directional and stabilizing selection. 
Throughout, the width w of the fitness function is assumed 
constant. 

The quantitative character under consideration is assumed 
to be determined by n freely recombining, equivalent loci. 
The allelic effects are additive within and between loci; that 
is, there is no dominance or epistasis. The phenotypic value 
of an individual is the sum of a genetic contribution and a 
normally distributed environmental effect with mean zero and 
variance uz= 1. Therefore, the phenotypic mean equals the 
mean of the additive genetic values, g,, and the phenotypic 
variance is a:,, = a;,, + a&with a;,, denoting the additive 
genetic variance in generation t. We shall use the parameter 
V, = w2 + a: = w2 + 1 to describe the strength of stabilizing 
selection on the breeding values. Assuming that the pheno- 
types follow a normal distribution (with mean g, and variance 
a;,), the mean viability of the population is 

(Latter 1970), and its (multiplicative) growth rate is 

A similar model was developed by Lynch and Lande (1993), 
Lynch et al. (1991), and Charlesworth (1993), although the 
latter two focused on populations of infinite size. 

We assume the following simple kind of density-dependent 
population regulation (cf. Lynch et al. 1993). Let K be the 
carrying capacity, that is, the maximum number of breeding 
adults. The N, (5K) breeding parents in generation t produce 
BN, offspring, an expected R,N, of which will survive via- 
bility selection. In this way, demographic stochasticity is in- 
duced. If the actual number of surviving offspring is larger 
than K, then K individuals are chosen randomly to constitute 
the next generation of parents. Otherwise, all surviving off- 
spring serve as parents for the next generation. With this type 
of density-dependent population regulation, the number of 
reproducing adults remains roughly constant at K, until W, 
< 1/B, at which point the population cannot replace itself. 

Analytical Approximations 

For a similar continuous-time model, but without density- 
dependent population regulation, Lynch and Lande (1993) 
developed a theory of critical rates of environmental change. 
They defined a critical rate of environmental change, kc,  as 
that value of k beyond which W,eventually declines below 
1/B. In the present model, extinction is certain, regardless of 
k, because the number of offspring produced is always finite 
(5 BK) and there is always a nonzero probability that no 
offspring survives selection. Thus, our focus will be on the 
dependence of the mean time to extinction and, to some ex- 
tent, the distribution of extinction times, on the ecological 
parameters k, w2, K, B, and a? .  These parameters (together 
with genetic parameters like mutation rates, number of loci, 
etc.) determine the distribution of the quantitative-genetic 
trait, in particular its mean g and its variance a:, which in 
turn defines the mean viability. The derivation of an exact 
theory for the joint process of evolution and extinction is 
beyond our capabilities. The following theoretical approach, 
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based on several simplifying assumptions, is intended pri- 
marily as a guide to the qualitative behavior of the general 
model. Nevertheless, it provides good approximations in 
some important regions of the parameter space. The first part 
up to equation (10) is parallel to Lynch and Lande's (1993) 
treatment, however more general, because our discrete-gen- 
eration model neither requires weak selection nor small a? .  

A Gaussian Theory for the Dynamics of the Mean Pheno- 
type.-The evolutionary dynamics of the selected character 
is key to understanding the extinction process. As a result of 
directional environmental change, the mean phenotype g 
evolves but lags behind the optimum. Once the mean phe- 
notype lags sufficiently far behind 0 that W < 1/B, the pop- 
ulation size starts to decline. With a smaller population size, 
genetic drift reduces the genetic variance, which leads to an 
even larger lag of the mean phenotype and a further decrease 
of mean fitness. Once this synergistic process begins, ex- 
tinction soon follows. For the rest of this subsection we as- 
sume that k and a?are small enough, so that W is sufficiently 
high to ensure that the effective population size Ne is ap- 
proximately constant. 

Since stochasticity plays an important role in our model, 
a theory is needed that makes predictions for an "average" 
population. In our theory for the probability distribution of 
mean phenotypes, we will consider the genetic variance to 
be constant and assume that a numerical or theoretical es- 
timate is available, an assumption that will be discussed later. 
We will use the notation 

where s is a measure for the strength of selection. 
Under our assumption of a Gaussian distribution of phe- 

notypic values and a constant genetic variance, the expected 
dynamics of the mean phenotype, conditional on the given 
values g, and O,, is 

In fact, the conditional distribution of g,+l is Gaussian with 
mean given by (4) and variance u;/N,, where Ne is the ef- 
fective population size (cf. Lande 1976). Denoting this con- 
ditional distribution by j the unconditional distribution of 
the mean phenotype by @, and the distribution of 0, by 8, 
we obtain the recursion 

This generalizes Lande's (1976) equation (16), by including 
variation of the optimum 0. From equation (5), taking into 
account (2), the following recursions for the expected mean 
and the expected variance of g are obtained: 

From these equations, the dynamics of the expected mean 
phenotype (with random drift and fluctuations of the optimum 

averaged out), and of the variance of the mean phenotype 
are easily obtained: 

+ (I - S ) ~ ' V [ ~ ~ ] .  (7b) 

These two formulas correspond to equations (14) and (15) 
in Lynch and Lande (1993). Together, they define the Gauss- 
ian probability distribution for the mean phenotype for pop- 
ulations with genetic variance a: exposed to environments 
with properties k, 02,and a;. 

The influence of the distribution of initial mean phenotypes 
becomes weaker as time elapses. Asymptotically, for large t, 
the distribution @(g) settles down to a traveling wave with 
mean and variance given by 

E[gt] - kt - k l ~ ,  (gal 

As noted previously under this model (Charlesworth 1993; 
Lynch and Lande 1993), the mean phenotype eventually 
evolves with an expected rate exactly equal to the rate of 
environmental change k, but lags behind the optimum by an 
expected amount kls. Similar phenomena have been found 
for other forms of directional selection (cf.'Hill 1982; Biirger 
1993). Assuming a population initially at the environmental 
optimum, E[go] = V[go] = O0 = 0, the time scale for ap- 
proaching this equilibrium is as follows (Lynch and Lande 
1993). From (7a), the expected mean phenotype E[g,] attains 
95% of its asymptotic value (relative to the optimum), when 
(1 - s),095 = 0.05. Provided a; < V,, t0 .9~  .= 31s = ~V,/U;. 
The variance of the distribution of g equilibrates in approx- 
imately half this time. 

With the help of equations (7a,b), an explicit formula can 
be derived for the expected growth rate A, of the population 
at time t. Denoting V,,, = V, + a: + V[g,] + a? and taking 
the expectation of R, (cf. eqs. 3a,b) with respect to the normal 
distributions of g, and O,, we obtain 

where 

is the expected growth rate if E[g,] = kt. By assumption, we 
always have go = 0 initially, so that A. = Bo,o. By analogy 
with Lynch and Lande (1993), the critical rate of environ- 
mental change kc is defined as the value of k such that the 
population can just replace itself, that is, such that A, = 1. 
A simple calculation shows that 
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where V, = V,,, and Bo = B o ,  = ~ol*. Equation (10) 
agrees with equation (10) of Lynch and Lande (1993) in the 
limit of large o2and small a?. 

Formula (10) is deceptively simple because we have not 
elucidated the determinants of the genetic variance yet. The 
genetic variance a' depends on the width of the fitness func- 
tion, the number of loci, the effective population size, the 
mutation parameters, and, unless the distribution of breeding 
values is exactly Gaussian, on the rate of environmental 
change k. Thus, an exact solution of equation (10) requires 
a priori knowledge of a' for k = kc. The dependence of a' 
on the various parameters is investigated in some detail in a 
section below. 

A Quasi-Deterministic Approximation for the Mean Time to 
Extinction.-The preceding theory predicts that a population 
will survive and evolve towards a steady response, as given 
by (8a), if k 5 kc. Otherwise, it will decline towards extinc- 
tion, despite any ability to evolve. To obtain a kind of "quasi- 
deterministic theory" of extinction times for the case in 
which the critical rate has been exceeded, we assume that 
the expected growth rate A, describes the dynamics of the 
population size with reasonable accuracy. Two phases of pop- 
ulation dynamics need to be considered. During the first 
phase, A, declines steadily until A, = 1, with the number of 
reproductive adults remaining constant at K (we assume that 
N(0) = K ) .  Let tl denote the length of this phase. During the 
second phase, as A, decreases further, the population size 
progressively declines. We define extinction as having oc- 
curred when the population size has been reduced to a single 
individual (this is clearly justified in dioecious species). De- 
noting the length of the second phase by tz, the mean time 
to extinction is re = t l  + t2. 

In the following equation, we assume for simplicity that 
V,,, is approximately constant, and equal to V,. This is jus- 
tified under the weak assumption that a: + V[g,] 4 V, + 
a;. Then, a surprisingly simple formula can be derived for 
the length of the first phase. We have only to solve equation 
(9) for t such that A, = 1. To this aim, let 

A straightforward calculation, using equations (7a), (9), and 
(lo),  shows that 

A, = Bo1 - K 2 [ 1  - (1 - s)q2 (11) 

Provided Bo > 1 (i.e., the population would be capable of 
positive growth if the mean phenoptype coincided with the 
optimum), the length tl of phase one, is obtained by solving 
equation (1 1 )  with A, = 1, 

for k > kc. (1 2 4  

If k,lk is sufficiently small, so that ln(l - k,lk) = -k,lk, we 
obtain from equations (12a) and (10) the approximation 

1
tl - - v2V, In Bo for k * kc. 

k 

The derivation of equations (12a,b) assumed a: to be inde- 
pendent of k and of time. Although this is not the case in 
our model, equation (12a) can be applied if the right-hand 
side of equation (10) is substituted for kc, but with a: as 
observed or estimated by the average genetic variance for 
the given k. Equation (12b) shows that tl is approximately 
independent of the population size and of the genetic vari- 
ance. 

No closed formula is available for the length t2 of the 
second phase. However, the recursion N,, 1 = A,N,, with initial 
condition No = K and A, defined by equation (9), is easily 
iterated on a computer until N, reaches one. In most, but not 
all, cases, the second phase is shorter than the first phase. 
From the above recursion it can be seen that tz is approxi- 
mately proportional to In K if k 9 kc. Since tl is approxi- 
mately independent of K, f, increases more slowly than In 
K. This is not too surprising because the condition k + kc is 
equivalent to A, < 1, and it is well known from models of 
environmental stochasticity that, even without genetic sto- 
chasticity, the mean time to extinction scales as In K (Lande 
1993). 

Since this quasi-deterministic theory neglects several 
sources of stochasticity (fluctuations of R, about its mean A,, 
demographic stochasticity, stochasticity, and autocorrelation 
resulting from genetic events like mutation and recombina- 
tion), it will always overestimate re. In particular, extinction 
also will occur (with probability one) at rates of environ- 
mental change less than kc. Taking into account variation of 
Rt (resulting from genetic stochasticity and environmental 
fluctuations), and replacing the expected growth rate A, by 
the smaller long-run growth rate (cf. Lewontin and Cohen 
1969; Lande 1993) yields only slightly lower estimates of 
the critical rate and of the mean extinction time if a? = 0. 
Therefore, we refrain from presenting such approximations. 

The Simulation Model 

Because the basic model is very complex, combining tem- 
porally variable aspects of the environment with a quanti- 
tative-genetic model based on polygenic inheritance, com- 
prehensive stochastic computer simulations have been per- 
formed to determine the dynamics of evolution and extinction 
more explicitly and to check the analytical approximations. 
The simulation model has been adapted from the one used 
in Biirger et al. (1989) for investigating mutation-selection- 
drift balance. 

The genotypic value of the character is determined by n 
additive loci with no dominance or epistasis. We chose n = 
50 for all of our simulations. We simulate the continuum-of- 
alleles model of Crow and Kimura (1964) by drawing indi- 
vidual allelic effects from a continuous distribution, so the 
number of possible segregating alleles per locus is unlimited. 
The phenotypic value of an individual is obtained from the 
genotypic value by adding a random number drawn from a 
normal distribution with mean zero and variance a2 = 1. The 
generations are discrete, and the life cycle consists of three 
stages, as described below. 

To initialize the simulation, a population of K parents is 
generated by choosing five allelic effects at each locus and 
randomly sampling alleles such that a binomial distribution 
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with given variance is obtained; subsequently, the population 
is allowed to evolve under stabilizing selection until it reach- 
es mutation-selection-drift balance, as judged by means of 
the stochastic house-of-cards approximation developed in 
Burger et al. (1989). The parameters during this phase are 
identical to those during the phase of environmental change 
to follow, except that k = 0 and a? = 0. 

1. Population Regulation and Random Sampling of Breed- 
ing Pairs.-The surviving offspring of the preceding gen- 
eration form the potential breeding pool. If, at this point, the 
number of individuals is K (= carrying capacity) or less, then 
all individuals (with the possible exception of one, because 
of monogamy) serve as parents for the next generation, and 
the appropriate number of breeding pairs is formed. Other- 
wise, K individuals are sampled without replacement to con- 
stitute the next generation of parents. The sex ratio is always 
1: 1. Thus, the mating system is dioecious and monogamous. 

2. Production of Offspring.-We assume that there are nei- 
ther differences nor stochasticity in fertility or fecundity. 
Each breeding pair produces the same number of offspring, 
namely 2B. The genotype of each descendant is obtained from 
that of its parents, with free recombination and alleles subject 
to mutation with genic mutation rate p.. For each gamete, a 
uniformly distributed random number between 0 and 1 is 
drawn, and if this random number is lower than the gametic 
mutation rate np., one of the genes constituting this gamete 
is chosen randomly for a mutation to occur (since in our 
simulations np. = 0.01, the probability that an individual 
incurs more than one mutant at a locus is negligible). The 
effect of the new allele is obtained by adding a Gaussian 
random number with mean zero and variance a2to the current 
allelic effect. In the present simulations, we assumed p = 2 
X and a2 = 0.05. This gives a genomic mutation rate 
of 2np = 0.02 and an input of mutational variance per gen- 
eration of V,/az = 10-3, as approximately observed in em- 
pirical studies (Lande 1976; Lynch 1988). 

3. Viability Selection.-Selection acts solely through via- 
bility selection before reproduction. This was imposed by 
assigning the fitness 0 < Wz,,5 1 (according to formulas [ I ]  
and [2]) to individuals of type z. The survivors, determined 
by drawing uniformly distributed random variables, served 
as the potential breeding pool for the next parental generation 
as described above. By this means, viability selection induces 
demographic stochasticity. 

This life cycle was iterated until extinction occurred, that 
is, until one or no individual survived selection. All of the 
statistics on the quantitative trait and fitness were evaluated 
after reproduction but before selection. 

Since each breeding pair produces exactly 2B offspring 
and, in the absence of selection, N parents are sampled with- 
out replacement from the pool of BN potential parents, the 
family size follows a hypergeometric distribution with mean 
2 (the population replaces itself) and variance 

It follows (Falconer 1989, eq. 4.7) that the effective popu- 
laiton size is approximately 

provided 1/B is small compared to N 

A Moving Optimum 

To study the influence of the various ecological and genetic 
parameters on the distribution of extinction times, 100 rep- 
licate runs (with different initial populations-resulting from 
different random seeds) were performed for each parameter 
combination. The statistics reported below are averages of 
the data of these 100 replicates. 

In order to apply our theoretical approximations, estimates 
for the effective population size Ne and the additive genetic 
variance a; are needed. Simulations show that formula (13) 
provides an excellent approximation for Ne in the parameter 
range we have explored, unless selection is very strong. 
Moreover, Ne enters the formulas only through V[g,] which 
is, in general, small compared to V,, so that deviations from 
(13) can be neglected. 

Obtaining theoretical estimates of a; is much more trou- 
blesome. In Burger et al. (1989), it was shown that for sta- 
bilizing selection with a fixed optimum, the so-called sto- 
chastic house-of-cards approximation 

provides a good estimate for the additive genetic variance 
under mutation-selection-drift equilibrium (see also Keigh- 
tley and Hill 1988; Barton 1989; Houle 1989). The present 
simulations, with k = 0 and a? = 0, confirm this (cf. fig. 6 
below). In fact, equation (14) is half the harmonic mean of 
the deterministic house-of-cards approximation (Turelli 
1984) and the neutral prediction 

(Lynch and Hill 1986). As long as Ne is less than 500 or so, 
and stabilizing selection is not too strong (e.g., V, 2 lo) ,  
(14) is close to (but less than) (15). 

As we shall see below, with a moving optimum the average 
additive genetic variance always remains below (15), but 
above (14). This implies that for small-to-moderate popu- 
lation sizes, and with moderate-to-weak stabilizing selection, 
(14) may be used as a reasonable approximation, regardless 
of k. If the neutral prediction (15) is used in connection with 
the quasi-deterministic theory, we obtain an upper limit to 
%, 

In the following subsections, we show how the extinction 
dynamics depend on the various ecological parameters. For 
the rest of this section, we assume k > 0 and a? = 0. 

Strength of Stabilizing Selection and Extinction Time.-
With a fixed optimum (k = O), the mean fitness of a population 
increases with increasing o (decreasing selection), and the 
mean extinction time is expected to increase with o as well. 
With a moving optimum, the situation is more complicated. 
If stabilizing selection is weak ( o  large), the fitness function 
is flat, and the expected lag (see [7a], [gal) tends to be large. 
On the other hand, the additive genetic variance a: depends 
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FIG.1A. Mean time to extinction as a function of the strength w of stabilizing selection, for different rates of environmental change 
k. The symbols are averages over 100 replicate simulation runs, as described in the text. The carrying capacity is K = 128; the number 
of offspring produced per individual is B = 2; and there are no random fluctuations in the environment (a?= 0). 1B. Mean time to 
extinction as a function of the rate k of environmental change for weak (w2 = 99), moderate (w2 = 9), and strong (w2 = 1) stabilizing 
selection. K = 32, B = 2, and a? = 0. 

on w2, that is, for extremely strong selection (w2 -+ 0), oi 
tends to zero, whereas for large w2, it becomes almost in- 
dependent of w2 and tends to the neutral expectation (15). 
Since the response to selection is approximately proportional 
to oi,this suggests re might be maximized at an intermediate 
w2, a pattern that is predicted if one substitutes the SHC- 
approximation (14) for oi into formula ( lo),  and plots kc as 
a function of w. The above explanation is slightly different 
from that of Huey and Kingsolver (1993) who found a max- 
imum kc at an intermediate w2 under the assumption that 
ui is independent of w2. 

Figure 1A shows the dependence of the mean extinction 
time (from stochastic simulations) on the strength of stabi- 
lizing selection for various values of k. For high k, we observe 
that the extinction time increases as the strength of stabilizing 
selection decreases. For lower k-values (near kc), we observe 
a maximum at intermediate w values. 

Figure 1B shows how the mean time to extinction depends 
on the rate of environmental change k, for three values of 
w2. The symbols are obtained from numerical simulations, 
whereas the curves are obtained from the quasi-deterministic 
approximation of re together with the assumption that u; can 
be approximated by the SHC-formula (14). The curves be- 
come vertical as k approaches the respective kc values (10) 
(kc = 0.0099, 0.025, and 0.024, for w2 = 99, 9, and 1, re- 
spectively) since the quasi-deterministic approach predicts re 
= fork  5 kc. Notice that kc reflects the expected qualitative 
dependence of the extinction time on w2 noted above-kc is 
maximized at an intermediate w2. Again, we see that for large 
k the mean time to extinction is higher for weaker selection, 
but not so for low k. 

As already pointed out, extinction also occurs when k < 
kc because of variation of the growth rate and the genetic 
variance, stochastic selection, and population regulation. 
However if k 4 kc, so that the viability stays well above 11 
B, extinction will occur only after an extremely long time, 
unless the carrying capacity is very low. 

Population Size and Extinction Time.-In the face of a 
changing environment, larger population size reduces the risk 
of extinction due to stochastic genetic events. However, this 
effect is not necessarily very large. For sufficiently high val- 
ues of k, so that the mean growth rate A < 1, the extinction 
risk for large populations is only slightly below that of small 
populations (fig. 2A). In fact, we demonstrated below formula 
(12b) that in this case fe increases more slowly than In K. 
Given the (reasonable) assumption that the genetic variance 
does not increase indefinitely as K increases, it is easily seen 
from equation (10) that kc asymptotically approaches a con- 
stant value as K tends to infinity. This suggests that for suf- 
ficiently large k, any population, however large, will become 
extinct rapidly, whereas for smaller k, the extinction risk for 
large populations may be significantly lower. This conclusion 
is supported by figure 2. 

Figure 2B displays the dependence of the mean time to 
extinction on k for three different population sizes, and com- 
pares the simulation results with the quasi-deterministic the- 
ory. Also, it shows that the advantage of large population 
size is much more pronounced at smaller rates of environ- 
mental change. The curves in figure 2 are based on the quasi- 
deterministic approximation, with the genetic variance as-
sumed to be given by equation (14). For small k, the larger 
the population size, the poorer is the approximation. Two 
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Carrying Capacity K Rate of Environmental Change k 

FIG. 2A. Mean time to extinction as a function of the carrying capacity K, for different rates of environmental change k. For all data 
in both panels, B = 2;  w2 = 9; and a? = 0. 2B. Mean time to extinction as a function of the rate k of environmental change for different 
carrying capacities. The symbols are data obtained from simulations. The lines indicate mean extinction times from the quasi-deterministic 
approximation based on the SHC-approximation (14) for the genetic variance (see the text). For k = 0.45, 0.35, 0.225, the mean time 
to extinction, based on numerical estimates of a:, is 20, 26, 131, respectively. The observed values are 18.7, 24.6, and 115.5, respectively. 

opposing "forces" cause the failure of this approximation. 
First, the genetic variance is higher than (14) because of 
directional selection. The magnitude of this effect increases 
with population size (see fig. 6), leading to a significant in- 
crease of k, and to a higher extinction time, compared to the 
prediction. Second, as already discussed, the quasi-deter- 
ministic approach neglects several sources of stochasticity 
that decrease the time to extinction. As may be seen from 
figure 2, which of these forces is stronger depends on the 
parameters (here on K). For K = 512 and the variance taken 
from (14), the critical rate k ,  = 0.108 (fig. 2B) is an under- 
estimate because (14) underestimates the observed a;. With 
u i  = 0.62, the simulation value obtained for k = 0.225, we 
obtain kc = 0.210 which is an overestimate as expected, 
because several sources of stochasticity have been neglected. 
This suggests that random fluctuations of the genetic variance 
and demographic stochasticity add considerably to the risk 
of population extinction, whereas increase of genetic variance 
in response to directional selection decreases the extinction 
risk. 

Number of Offspring and Extinction Time.-The depen-
dence of the mean extinction time on the number B of off- 
spring produced per individual is not simple. If B 9 -lo 
(so that the risk of extinction is very low if the mean phe- 
noty e is at the optimum, cf. [9]), we obtain from ( lo) ,  k, 
o- Vfm.In general, if k 9 k,, equation (12b) implies that 
tl and that t2 depends only weakly (approximately 
logarithmically) on B. On the other hand, if B is such that 
the corresponding critical rate is only slightly below the ac- 
tual rate k, a small increase in the birth rate B may lead to 

a significant reduction of the extinction risk because k ,  may 
increase above k. Additionally, given our mating system with 
monogamy and no variability in fecundity, a larger B leads 
to smaller N, and u;, thus partially offsetting the reduction 
of extinction risk gained through increased B. 

Distribution of Extinction Times.-As long as extinction 
occurs quickly, that is, k is well above k,, the standard de- 
viation of the extinction times is a fraction of the mean. As 
k becomes smaller, the distribution of extinction times be- 
comes very broad with the standard deviation typically near 
or even above the mean time to extinction. The median and 
mode may be significantly lower than the mean, and the range 
of extinction time may be measured in orders of magnitude 
(figs. 4A,B). As a consequence, conclusions about the fate 
of a single population cannot be drawn with confidence from 
the knowledge of the mean time to extinction, unless the 
environment changes rapidly. 

Stronger stabilizing selection leads to a higher coefficient 
of variation. The reason seems to be that with strong stabi- 
lizing selection, random fluctuations of the mean phenotype 
may easily lead to extinction, because an unusually large lag 
leads to a severe decline of fitness. 

Dynamics of Extinction.-If k is large, then extinction oc- 
curs, more or less, deterministically. The optimum starts to 
move, and the population mean responds evolutionarily, but 
the lag becomes larger and larger until the growth rate of the 
population becomes less than one, and the population size 
starts its decline towards extinction. In this case, the quasi- 
deterministic approximation works well. 

For k values near or somewhat below the critical rate, the 
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Birth Rate B 
FIG. 3. Mean time to extinction as a function of the number of 
offspring produced per individual. For all curves, K = 32, w2 = 9, 
nz = 0. For B = 2, 5, 10, and 100, the critical rates k ,  are 0.025, 
0.039, 0.047, and 0.067, respectively. 

situation is more complicated. As discussed in the previous 
section, the variance among runs can be very large. Some 
populations simply become extinct in the same way as de- 
scribed above. Others persist for a long time, presumably 
because favorable mutants occur in time to maintain a high 
level of variation. This allows the mean phenotype to catch 
up with the optimum and to follow it more closely for some 
time. Figure 5 displays one run where the genetic variance 
gets several boosts because of stochastic mutation events. It 
also shows the interplay between genetic variance, lag of the 
mean, and number of survivors of viability selection. When 
u i  is high, the lag is low, and the population maintains a 
high density. (The majority of runs with the same parameters, 
not displayed, show less "periodicities.") Figure 5 suggests 
a high serial correlation for the genetic variance, the lag of 
the mean phenotype, and the mean fitness. Such correlation 
has been observed earlier for different forms of selection 
(Keightley and Hill 1983; Burger et al. 1989; Burger et al. 
1994). 

Once the genetic variance becomes low, the population lag 
becomes larger and larger. This leads to stronger selection, 
to a decrease of effective population size, and as a conse- 
quence of random genetic drift, to a further decline in genetic 
variance. If no mutant occurs in time to increase the value 
of the trait, then the population is doomed to extinction. This 
kind of synergistic interaction (positive feedback) between 
population size and fitness decline has been called a "mu- 
tational meltdown" in a somewhat different context (Lynch 
and Gabriel 1990), and seems to be the main reason that 
extinction is more likely than predicted from our simple the- 
ory. 

Evolution in Response to Environmental Change.-If the 

Extinction Time 
FIG. 4. Probability distribution of the extinction time. Each his- 
togram is based on 300 replicate runs, and for both panels B = 2, 
K = 128, w2 = 9, and a; = 0. For the upper panel, k is above the 
critical rate kc = 0.08. For the lower panel, k is below. 4A. The 
average extinction time (over all 300 runs) is fe = 90.6. The min- 
imum and maximum observed extinction times are 47 and 313 
generations, respectively. 4B. k = 0.06, fe = 2307.6, and the max- 
imum and minimum observed extinction times are 120 and 14,015 
generations, respectively. 

rate of environmental change k is sufficiently low, popula- 
tions are able to respond evolutionary for a very long time. 
The results reported below are for rates of environmental 
change such that no population became extinct within the 
first 5000 generations. 

For the dynamics of the expected mean phenotype E[g,] 
and the expected variance of the mean phenotype V[g,] ,we 
have a simple theory (eqs. 7, 8). Our simulations show that 
equations (7a) and (8a) describe the evolution of the average 
mean phenotype adequately, if we insert the observed genetic 
variance into (7a) and @a), although the predictions tend to 
underestimate the observed lag by up to 15% (results not 
shown). Given all of the simplifications on which this theory 
is based, this agreement is surprisingly good. 

On the other hand, equations (7b) and (8b) yield very poor 
estimates for the observed variance of the mean phenotype, 
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Generations 

FIG.5.  Dynamics of the genetic variance a:,, (lower panel), the 
lag of the mean phenotypeE[g,] - kt (middle panel), and the number 
of surviving offspring BWrNt (upper panel), for one particular run. 
The rate of environmental change is k = 0.075 which is near the 
critical rate of kc = 0.08. The other parameters are B = 2, w2 = 
9, a? = 0, K = 128. The dashed straight lines are (from top to 
bottom): the carrying capacity K = 128; the expected lag of the 
mean, E[g,] - kt = 2.40; and the neutral (dots) and SHC-expectation 
(dashes) (eqs. (15) and (14)) for the genetic variance. The average 
variance for this run is a; = 0.317, compared to a; = 0.342 from 
the neutral expectation, and a; = 0.184 from the SHC-approxi- 
mation. The time to extinction is 981 generations. For this parameter 
combination, the average time to extinction from 100 replicate runs 
is 449 generations; the average genetic variance is a; = 0.277; and 
the average lag is 2.54. 

even for large K. For k = 0 (constant stabilizing selection), 
(8b) is approximately correct (cf. also Burger and Lande 
1994). According to (8b), however, qg]  is independent of k. 
Our simulations show that this is not the case. As the rate 
of environmental change k increases, so does the variance of 
the mean phenotype, and it may be more than 10 times as 
large as the prediction. There are several reasons for the poor 
performance of the analytical approximation for V[g,]. For 
example, variability and autocorrelation of a; have been ne- 
glected, and the derivation is based on a Gaussian assump- 
tion. Although our simulations show (see below) that the 
distribution of breeding values is approximately Gaussian on 
the average, temporal deviations from the Gaussian form do 
occur for any single population. Clearly, the fact that (7b) 
underestimates the variance of g is one of the reasons our 
theory often predicts much longer extinction times than ob- 
servations by simulations. We conclude that random excur- 
sions of the mean phenotype from its expectation are an 
important genetic determinant of risk to extinction for pop- 
ulations subject to environmental change. 

Rate of Environmental Change k 

FIG. 6. The observed genetic variance as a function of the rate of 
environmental change, for three carrying capacities. For each K, 
the observed variance (symbols and connecting lines), as well as 
the neutral (15) and SHC-approximation (14) for the variance are 
shown (straight lines of the same kind as for corresponding data). 
Open symbols refer to k values where all populations became ex- 
tinct. Filled symbols refer to k values where no population died out. 
Filled symbols are either averages over 5000 generations for 40 
replicate runs, or averages over 25,000 generations for eight rep- 
licate runs. 

Previous studies of directional selection have shown that 
the genetic variance in finite populations asymptotically tends 
to the neutral prediction (15) for truncation selection (Hill 
1982), and for exponential directional selection (Burger 
1993). However, it appears to be difficult to obtain an accurate 
theoretical prediction for a; in the present context. The 
Gaussian theory predicts a value for the genetic variance that 
is only slightly below the neutral prediction (15) unless K is 
much larger than in our simulations, and this prediction is 
unaffected by deviations of the mean from the optimum (Lat- 
ter 1970; Lynch and Lande 1993). On the other hand, an 
extension to finite population size of the rare-alleles approx- 
imation of Barton and Turelli (1987) fails to produce a rea- 
sonable approximation in the present model of a continuously 
moving optimum, because the deviation of the mean phe- 
notype from the optimum is too large (their assumption [7.7] 
being violated), and rare mutant alleles go to fixation during 
evolution. 

We observed that the additive genetic variance increases 
from its initial mutation-selection-drift equilibrium value 
(14), as it responds to the moving optimum. Due to a com- 
bination of directional and stabilizing selection, however, the 
variance stays below the neutral prediction (15). Figure 6 
displays the observed average genetic variance as a function 
of k for three different population sizes and moderately strong 
stabilizing selection. The open symbols represent values at 
which all populations became extinct, whereas the closed 
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symbols represent values where no extinction occurred in our 
simulations. For large k, the genetic variance remains at a 
level close to the SHC prediction because populations be- 
come extinct before the genetic variance can respond to di- 
rectional selection. 

The importance of the genetic variance for the extinction 
process is underscored by the high correlation (among rep- 
licate runs of the same set of parameters) between genetic 
variance and extinction time. Typical numerical values for 
this correlation range from 0.5 to 0.8, with a maximal ob- 
served value of 0.89. There appears to be little linkage dis- 
equilibrium generated, because the average genic variance is 
only a few percentage points higher than the average genetic 
variance. Since a$ = 1, heritabilities range from 0.08 (K = 

32) to 0.45 (K = 512, k = 0.15). 
Finally, we measured the skewness (the third central mo- 

ment divided by a;) and kurtosis (the fourth central moment 
divided by a:) of the breeding values. The average skewness 
was always very slightly positive (typically 0.01 to 0.1), and 
the average kurtosis very near to three, indicating an almost 
perfect average Gaussian shape. The distribution of each sin- 
gle population, however, may deviate significantly from 
Gaussian at any particular time. 

A Fluctuating Optimum 

Here we assume that k = 0, so that all environmental 
change is due to random fluctuations of the optimum with 
variance a;. In contrast to the case of a moving optimum 
where any population harboring little or no genetic variance 
is doomed to rapid extinction, for a fluctuating but otherwise 
constant optimum, genetic variability is not necessary for 
survival. In order to investigate the influence of genetics on 
population extinction for a fluctuating optimum;and to fa- 
cilitate comparison with purely ecological theories of ex-
tinction due to demographic and environmental stochasticity, 
we performed additional simulations for monomorphic pop- 
ulations in which all individuals have a genotypic value of 
zero (fig. 7). (Formally, this is a special case of our model 
if we put = 0, a; = 0, E[g] = V[g]= 0.) Monomorphic 
populations (open symbols) survive longer than genetically 
variable populations, the difference being smaller for larger 
population sizes. The reason is that variable populations re- 
spond to fluctuations of the optimum, but with a time lag of 
one generation. On the average, this reduces their fitness in 
the subsequent generation, compared to a monomorphic pop- 
ulation at g = 0, because the optimum has a 50% chance of 
changing in the opposite direction to evolution in the pre- 
ceding generation. In addition, phenotypic variance induces 
a load by reducing the expected growth rate (see eq. (9), and 
Lynch and Lande 1993). 

Once the standard deviation a, of random fluctuations 
reaches the same order of magnitude as the width o of the 
fitness function, any population is in danger of being extin- 
guished suddenly, and genetics makes little difference. In this 
case, rare large shifts in the optimum occur that reduce the 
population number greatly. 

Since there is a Gast amount of literature on models of 
environmental stochasticity (Lewontin and Cohen 1969; Lud- 
wig 1976; Turelli 1977; Leigh 1981; Tuljapurkar 1982; Lande 

Variance of Random Fluctuations 
FIG.7 .  Mean time to extinction as a function of the variance uz 
of random fluctuations of an otherwise constant optimum (k = O), 
for three carrying capacities. The other parameter values are B = 
2, and w2 = 9. The filled symbols are from simulations including 
genetics, whereas the open symbols are from simulations for a 
monomorphic population with genetic value equal to zero. 

and Orzack 1988; Lande 1993), one might be optimistic and 
hope that these apply in the current context. However, this 
optimism is not justified. With k = 0, the quasi-deterministic 
approach predicts infinite extinction times for a? < ~~o~-
V,- a: - qg] whereas our simulations show that extinction 
occurs rapidly for much smaller values of a?. The reason is 
that the quasi-deterministic approach does not account for 
stochastic fluctuations in the growth rate, but incorporates 
only the (weak) influence of a; on mean fitness. Additionally, 
our model includes demographic stochasticity generated by 
viability selection. The corresponding infinitesimal variance 
is easily calculated, and Leigh's (1981) diffusion model com- 
bining demographic and environmental stochasticity can be 
extended to the present situation. Still, this approach leads 
to overestimates of the mean extinction time by one or more 
orders of magnitude (results not shown). The reason is that 
the diffusion approximation is only accurate for long-run 
growth rates very near to zero, which is not the case for the 
parameters we investigated. In the case of pure demographic 
stochasticity, this was noticed by Gabriel and Biirger (1992). 
Other combined treatments of demographic and environ- 
mental stochasticity (cf. Wissel and Stocker 1991, and refs. 
therein) do not apply here because they are based on branch- 
ing processes, thus neglecting density dependence. 

A Fluctuating and Moving Optimum 

As noted above, temporal fluctuations of an otherwise sta- 
tionary optimum may lead to a considerably increased risk 
of extinction. Figure 8 shows the combined effect of sto- 
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Rate of Environmental Change k 

FIG.8. Mean time to extinction as a function of the rate of en- 
vironmental change, for five levels of temporal fluctuations in 0 .  
The other parameters are B = 2; K = 128; and w2 = 9. 

chastic environmental change with a directional component. 
Populations that would be able to evolve and cope with a 
steadily changing environment may become extinct rapidly 
if random fluctuations of appreciable size occur. If the rate 
k of environmental change is already too high for a p~pula t ion 
to adapt, random fluctuations add little to the extinction risk. 

In this general case, we are not in the position of presenting 
reasonably good analytical approximations. The quasi-deter- 
ministic approach fails because, among others, it neglects 
random variation in the growth rate R,. The use of the long- 
run growth rate p, instead of the A, leads to lower values of 
kc and re, but they are still considerable overestimates. 

Although a substantial body of theory has been developed 
on the relationship of environmental change to extinction 
probability (Ludwig 1976; Leigh 1981; Tier and Hanson 
1981; Goodman 1987; Lande 1993), all of these studies have 
focused on genetically monomorphic populations in a sto- 
chastically varying environment with no directional trend. 
Our primary concern, and that of Pease et al. (1989), Lynch 
et al. (1991), and Lynch and Lande (1993), is with the con- 
sequence of a long-term environmental trend, such as global 
warming. For a population lacking in genetic variation, there 
can be only one consequence of such environmental change- 
eventual extinction. Genetic variation replenished by recur- 
rent polygenic mutation enables a population to adapt to a 
changing environment. No amount of genetic variation will 
enable a population to track the environmental optimum per- 
fectly. However, if the rate of environmental change is suf- 
ficiently slow and the amount of genetic variance for the 

selected trait is sufficiently high, the population mean phe- 
notype settles into a quasi-steady-state lag behind the envi- 
ronmental optimum. The magnitude of this lag, relative to 
the width of the fitness function, determines the mean fitness 
of the population, which in turn determines the risk of ex- 
tinction. Above a critical rate of environmental change, the 
lag load becomes so high that the population cannot replace 
itself, and rapid extinction becomes almost certain. 

Finite populations exposed to stochastic events are doomed 
to eventual extinction. Nevertheless, there is a sharp bound- 
ary in the relationship between the rate of environmental 
change and mean extinction time, such that below a critical 
rate of change the population can track the environmental 
trend sufficiently closely to guarantee long-term survival. 
With the models that we have employed, this critical rate of 
change is typically on the order of 10% or less of a phenotypic 
standard deviation per generation. As noted above, for sit- 
uations in which the rate of environmental change is suffi- 
ciently far below the critical rate, the mean phenotype is 
expected to settle into an evolutionary trajectory that lags 
behind the environmental optimum, but is otherwise parallel 
to it. Thus, the critical rate of environmental change is for- 
mally equivalent to the maximum sustainable rate of phe- 
notypic evolution (Lynch and Lande 1993). 

Our analyses seem to be the first to formally consider the 
joint role of environmental change and genetic and demo- 
graphic stochasticity in the extinction process. As noted 
above, these factors interact in a synergistic way, often lead- 
ing to much more rapid extinction than expected, based on 
the operation of single factors that have been the focus of 
most previous studies (cf. Goodman 1987; Lande 1993). This 
is most clearly illustrated for our results with rates of en- 
vironmental change close to the extinction threshold-pop- 
ulations became extinct at rates of environmental change be- 
low the threshold predicted by the theory of Lynch and Lande 
(1993), which assumed a constant level of genetic variance. 
Genetic stochasticity resulting from several factors (random 
mutation and recombination, viability selection, random cull- 
ing of excess progeny, and random sampling of gametes) 
leads to large temporal fluctuations in genetic variance. Pe- 
riods of stochastic loss of genetic variation can be quite pro- 
longed, due to the waiting time required for the replenishment 
of variation by mutation. During such bottlenecks, the mean 
phenotype can lag behind the optimum to such a high degree 
that extinction is almost certain, even though it would be 
unlikely if the genetic variance remained stable at its equi- 
librium expectation. 

Viability selection was the only source of demographic 
stochasticity in our simulations, since we forced the sex ratio 
to be 1 :1 and maintained a constant family size. When prog- 
eny numbers are treated as Poisson variables and sex ratios 
as binomial variables, dramatic declines in the mean extinc- 
tion time are observed in small populations, even in the ab- 
sence of environmental stochasticity (Gabriel and Biirger 
1992), and when demographic stochasticity occurs in a pop- 
ulation with genetic variance for fitness, the mean extinction 
time can drop by orders of magnitude (Gabriel et al. 1991). 

The monogamous mating system that we employed, in 
combination with fixed family size, yields an effective pop- 
ulation size that is in excess of the actual number of repro- 
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ducing adults. Thus, in addition to minimizing demographic 
stochasticity as a source of extinction, the simulations that 
we employed led to the maintenance of higher levels of ge- 
netic variance than would be expected in a randomly mating 
population. Preliminary simulations indicate that a highly 
kurtotic mutant distribution leads to somewhat lower extinc- 
tion times than the Gaussian mutant distribution we have used 
here. The reason appears to be that under such a mutant 
distribution, a larger fraction of mutants is neutral while a 
few mutants have large effects, thus producing more genetic 
stochasticity. Taking all of these factors into consideration, 
it seems likely, for most organisms, that the critical rate of 
environmental change will be on the order of 1% or fewer 
phenotypic standard deviations per generation. 

As noticed by Lynch and Lande (1993), even below the 
critical rate, because of functional and developmental con- 
straints, no character can be expected to evolve directionally 
for an indefinite period of time. However, based on long-term 
selection experiments with small populations, evolution of 
10 or more phenotypic standard deviations is possible. If the 
critical rate is on the order of 1% of a phenotypic standard 
deviation, this rate of evolution could be sustained for several 
hundreds or even thousands of generations, before functional 
or pleiotropic constraints are encountered. 

Huey and Kingsolver (1993) applied the model of Lynch 
and Lande (1993) to the evolution of thermal sensitivity. On 
the basis of this model, they investigated how the shapes of 
thermal performance curves affect the evolutionary responses 
of a population to a gradual, directional climate change. Their 
theoretical predictions depend crucially on the relationship 
between the genetic variation in optimal temperature and the 
width of the fitness function (performance breadth). Under 
the assumption that the genetic variance is independent of 
the width of the fitness function, Huey and Kingsolver sug- 
gested that there might be an intermediate width that max- 
imizes the critical rate of environmental change (and hence 
maximizes the time to extinction). They argued that, by re- 
ducing the intensity of selection, too wide a fitness function 
leads to a high lag load, whereas an excessively narrow fitness 
function reduces the lag, but nevertheless induces a very high 
load. On the other hand, on the basis of a Gaussian approx- 
imation (cf. Lynch and Lande 1993), they found that the 
critical rate of change increases as the width of the fitness 
function increases. Our simulations, allowing the genetic 
variance to evolve in response to selection, show that there 
indeed is an intermediate width of the fitness function that 
maximizes the mean extinction time in a changing environ- 
ment, unless the environment changes too fast. This suggests 
that in a slowly, but steadily, changing environment, broad 
generalists and narrow specialists will be most vulnerable to 
extinction. 

Several technical issues in evaluating the influence of en- 
vironmental change on the risk of extinction remain unsolved. 
First, although we have been successful in obtaining an an- 
alytical approximation to the mean extinction time for situ- 
ations in which extinction is likely to occur within time pe- 
riods of 100 generations or so, the theory is not yet adequate 
for describing the situation when the rate of environmental 
change is near or below the critical rate. Second, even for 
cases in which we are able to predict the mean extinction 

time analytically, no theory has been forthcoming for the 
probability distribution of extinction time. Typically, our re- 
sults show a strongly skewed distribution, with the mode 
being significantly below the mean. Since the coefficient of 
variation of extinction time depends strongly on the genetic 
and ecological parameters, it is clear that the mean extinction 
time alone does not provide sufficient information to describe 
the risk of a population to extinction. 
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